Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #12

Game performance tuning

Introduction

« Game performance Iis critical

— gameplay will decrease with lags, low resolution
rendering, memory overload etc.

— performance has to be monitored
« CPU charge, bus bandwidth use, memory footprint

« Essentially, timing and memory consumption
have to be measured

— to point out the most consuming sections

§% Universiteit Utrecht

Timing
« Each OS has an internal real-time clock system
* |In WIn32 programming environment

#include <windows.h>
DWORD WINAPI GetTickCount (void) ;

— number of milliseconds that have elapsed since the
system was started, up to 49.7 days

#include <time.h>
clock t clock (void);

— number of clock ticks elapsed since the program
was launched

« CLOCKS_PER_SEC specifies the relation between a
clock tick and a second (clock ticks per second)

= bJ = Universiteit Utrecht 4
N
N

R
L

=
@?

\\

Timing

To compute time elapsed in a function

unsigned long tl GetTickCount () ;
update HID() ;

unsigned long t2 = GetTickCount ()
update PlayerState();

unsigned long t3 = GetTickCount() ;

run AI();
unsigned long t4 = GetTickCount() ;
render () ;
unsigned long t5 = GetTickCount () ;
unsigned long timeHID = t2 - tl;

unsigned long timePlayer = t3 - t2;
unsigned long timeAT = t4 - t3;

unsigned long timeRender = t5 - t4;

Universiteit Utrecht

A
N

Timing
You can have a visual feedback of these

performance on screen

Or show a percentage representation to see
how the functions hold together

To detect what sections of the game are
slowing down the engine

Optionally, switch in real-time with faster
versions of them if performance decreases

— lower level of detall in rendering or game logic,
less HID updates etc.

Universiteit Utrecht

Timing
 Default resolution of GetTickCount is 10 to 16 ms

e Some routines may perform in less time
— 30 FPS = 33.3 ms for the whole game loop

« Multiple calls through iterations
— do not forget to remove them later on
— small over-estimation from the loop statement

— small under-estimation from compiler optimization of
loop statement

unsigned long timel = GetTickCount() ;
for (int i = 0; 1 < iterations; i++) {
// routine to estimate here
}
unsigned long time2 = GetTickCount() ;
double elapsed = (double) (time2-timel) /iterations;

Universiteit Utrecht

Timing
If you need higher resolution, and if a high-

resolution performance counter exists on the
hardware system

— processor dependent (nowadays ~10775s)

#include <windows.h>

BOOL WINAPI QueryPerformanceFrequency (
__out LARGE INTEGER *lpFrequency
) ;

// Retrieves the frequency of the high-resolution performance counter

BOOL WINAPI QueryPerformanceCounter (
__out LARGE INTEGER *lpPerformanceCount
) ;

// Retrieves the current value of the high-resolution performance counter

Universiteit Utrecht 8

Memory footprints

* To profile memory use
— to detect memory leaks
— to spot memory sensitive code

* By testing the total available memory before
and after the routine, and doing the
subtraction

long ml = available memory();
// here goes the routine to test memory for
long m2 = available memory();

long consumed memory = m2 - ml;

A

% N ;:‘f; Universiteit Utrecht

NS

Memory footprints

* Implementation more complex than timing

 |n multi-tasking, memory can be allocated from
other processes

— measuring total physical memory will also measure
allocations from these processes

* One solution Is to write your own memory
manager
— by overwriting the new and delete operators
— and counting the memory allocation / de-allocation

— but not only for the user type, also for the primitive

types
§% Universiteit Utrecht

10

W,

£r

Memory footprints

* operator new

unsigned long usedMemory = 0; // memory allocated so far

unsigned long maxUsedMemory = 0; // max allocated memory so far
int numAllocations = 0; // number of active allocations

unsigned long maxAllocations = 0; // max active allocations so far

// User-defined operator new
vold * operator new(size t blocksize)
numAllocations++;
usedMemory += blocksize;
1t (usedMemory > maxUsedMemory) maxUsedMemory = usedMemory;
1f (numAllocations > maxAllocations) maxAllocations = numAllocations;

return malloc (blocksize); // perform the memory allocation

//

Universiteit Utrecht

N

W,

£r

N

Memory footprints

* operator delete

//

unsigned long minUsedMemory = 0; // min allocated memory so far

// User-defined operator delete

void operator delete(void * pointer)

{

numAllocations—-;

// allocated size of a pointer created
// by a call to malloc

usedMemory —-= msize (pointer);

usedMemory;

if minUsedMemory =

free (pointer);

(usedMemory < minUsedMemory)
// free the memory

Universiteit Utrecht

Memory footprints

* Then, regularly print usedMemory value (and
numAllocations)

— should be stable over a long period of time if each
new has its corresponding delete

— should go down to zero just before terminating the
application

* if not, most likely due to a memory leak
* You can also have a MemoryManager that
keeps track of a usedMemory value
— Incremented after each new call
— decremented after each delete call

— stack variables can be ‘neglected’ as do not
produce memory leaks

% Universiteit Utrecht

13

Memory footprints

* One extra step Is to optimize yourself the
memory according to its usage (access /
allocation / de-allocation) in your engine
— If access and creation patterns are known
— Large memory pool allocation at start time

— Implementation of homegrown new and delete
operators

— To reduce Internal fragmentation that will slow
down the game

% Universiteit Utrecht

14

Analysis tools

* Tools are avalilable to analyze your game at
run-time, called code profiler

* Programming environments such as Visual
Studio have built-in profiler functionalities to
display percentage of CPU time taken by
functions, to track memory leaks, etc.

Optimization techniques

* Choose your enemy

— Focus on small portions of code that use many
resources

— Do not focus on linear sequential code
— Troubles are In iterations and recursions

— Make sure each loop takes as little time as
possible to execute

for (int i = 0; 1 < 10000, i++) {
for (int 3 = 0; Jj < 10000; J++) {
// this is usually here that you need to worry about resources
// as you will execute this code 10% times
}
}

%% Universiteit Utrecht

16

Optimization techniques

* Precompute as much as possible

— Try to tabulate mathematical functions, random
numbering etc.

— To perform only an array access in the loop

— Example

» sinus call takes 5 times longer to be evaluated than
to access an array

float acc = 0;
for (int i = 0; 1 < 1000; i++)

acc = acc + i * sin(x * i); // instead use: sinTable[x*i]

%
W

/A
4

£

Universiteit Utrecht 17

Optimization techniques

« Simplify your math
— Mathematical operators are not equally fast

— Complex function >> divide >> multiply >>
addition/subtraction

— Try to simplify equations (and/or tabulate them)
— Try to reduce type conversion
— Examples

double acc = 1000000;
for (int 1 = 0; 1 < 10000; i++) acc = acc / 2.0;
double acc = 1000000;

for (int 1 O, 1 < 10000; i++) acc = acc * 0.5;

//the second version takes 60% of the timing cost to execute

a*b + a*c
b/a + c/a

a* (b+c); // gets rid of one multiply
(1/a) * (b+c); // changes one division for one multiply
(b+c) /a; // gets rid of one division

% Universiteit Utrecht

18

Optimization techniques

» Store data efficiently

— chose the right data type with the right precision

— both code execution and memory footprint are

proportional to the number of bytes used

char
unsigned char
int

unsigned int
float

double

bool

% Universiteit Utrecht

1

R 0 &~ ~ b~ P

[-128 , 127]
[0, 255]

[-2 147 483 648 , 2 147 483 647]
[0, 4 294 967 295]
[-3.4*1038 , 3.4*1038] (7 decimal)
[-1.7*103%8 | 1.7*10308] (15 decimal)
true / false

19

Optimization techniques

* Minimize malloc (new) and free (delete) calls
— Try to avoid allocation and de-allocation in loops
— Place them outside the critical sections
— Example

for (long k=0; k<1000000; k++) {
int 1 = 0;
}
// takes 3.53 ms to run (and 3.48 when i declared before for)

for (long k=0; k<1000000; k++) {

int *i = new int;
delete 1i;
}
// takes 5.58 s to run!! (and 5.56 when i1 declared before for)
§ g% Universiteit Utrecht 20

S
L

Optimization techniques

Use prefix increment/decrement operators
vector<double> vec;
// add 1000000 elements in the vector
vector<double>::iterator ite;
(ite = vec.begin(); ite != vec.end(); ite++) { } // takes 2.45 s
(ite = vec.begin(); ite != vec.end(); ++ite) { } // takes 1.07 s
Pseudo-code of prefix and suffix ++
// prefix : ++variable // suffix : variable++
type & type::operator ++ () | type type::operator ++ (int) {
// do the increment type ans = *this;
// e.g. value += 1; // do the increment
return *this; // or call ++ (*this) ;
} return ans;
}
Universiteit Utrecht

Optimization techniques

e Be linear

— CPUs come with memory caches loaded when
accessing data

— Access continuous data in memory (e.g.
traversing an array from begin to end) produces
less cache misses

* S0 less loading time

%% Universiteit Utrecht 292

Optimization techniques

« Watch out for pointers

— Traversing a seguence of pointers can take time
as the objects can be far away from each others
IN memory

— Try to minimize the indirections
— Example

for (int 1 = 0; 1 < numPlayer; i++)

Game: :getInstance () ->logic->world->team->players[i] = 1 * 2;

// can be rewritten more efficiently as

int * playersList = Game::getInstance()->logic->world->team->players;

Universi

for (int 1 = 0; 1 < numPlayer; i++)
playersList[i] = 1 * 2;
teit Utrecht 23

Optimization techniques

 Size does matter

— To compile arrays of structures, the compiler
performs a multiplication by the size to create
the array indexing

« If the structure size is a power of 2, the multiplication
IS replaced by a shift operation (much faster)

« you can round array sizes aligned to a power of 2
even If you do not use all of it

— Example

int arrayPlayersID [38];
int arrayPlayersID [64]; // faster allocation

.-%

% Universiteit Utrecht 24

Ab*

N2

Optimization techniques

* Breaking switches

— To reduce the number of comparisons in a
switch (or if-else-If statement), place all the less
frequent (error) cases at the end

switch (event.msg) {
case FREQUENT MSGI1:
handleFregMsgl () ;
break;
// other frequent messages ...
case INFREQUENT MSGI1:
handleInFregMsgl () ;
break;
// other infrequent messages ...
default: //...

Universiteit Utrecht

g,
N

£

Optimization techniques

* Local variable in inner most scope

— Do not declare local variables directly after
function declaration

— Use them only when necessary

— Example
vold function () {
1t (lerror()) {

// do something if no error
}
else {
LargeMemoryObject o;
// do something with o
}
}

Universiteit Utrecht

Optimization techniques

* Returning value
— Do not return a value If not used

— Returning a value has a cost (CPU and
memory)

— Example

bool calledFunction (float x) {
// do something with x

return true;

}

void function () {
calledFunction(2.0); // is not using return value

}

Universi

teit Utrecht 27

Optimization techniques

* Prefer initialization over assignment

— Direct Initialization saves a call to the default
constructor comparing to initialization followed
by Instantiation

— Example

void function (Object value) {
Object o; // default constructor
o = value; // assignment operator

}

volid function optimized (Object value) ({
Object o = value; // copy constructor

}

g% Universiteit Utrecht

28

Optimization techniques

e “Just in case” virtual functions

— Do not declare virtual functions just in case they
might be overridden one day

 look-up v-table cost (CPU to check it and memory to
store It)

— If the day comes, change them to virtual
— Example

class MyClass {

/]

virtual void function (float);
}
// no subclasses of MyClass

// or subclasses that do not need to override function

§ g% Universiteit Utrecht 2
U

Optimization techniques

« Keep the running fresh
— E.g. perform reset operations between levels

— Some consoles can even be completely
rebooted

— You can run manually some form of garbage
collector (and easier if you manage yourself the
memory allocation)

30

Physical structure

A normal PC/console game deals with at
least 4000 files (more for MMOGS)

A proper physical structure is crucial

Structure Is determined by which files need
other files in order to compile

In C++ this ‘need’ translates into #include
directives

I
N

&
L

Physical structure

In an ideal world, every file would compile by
itself

Not possible as a program is made up of
Interacting objects

We can try to minimize the amount of
connections between files

The level of connections between a file and
the rest of the code iIs called insulation

— fewer connections mean more insulated

g,
N

£

Physical structure

A class that hides well its implementation will
have better encapsulation

— Fewer classes depend on it
— Cleaner logical structure
— Easier debugging
— Simpler testing
 Whenever a file is modified, all files that
iInclude that file need to be recompiled

— 50 the more insulated files you have, the faster
the code compiles

Universiteit Utrecht 33

Header files

» Header files should contain the minimum
amount of code that still allows everything to
compile and run

* Move non-essential iInformation out of the
header file into the implementation file

— Constants only used in the implementation,
local structure definitions, algorithms etc.
 However, C++ does not provide for a very

clear distinction

— We still need to define the non-public members
of a class in the header file, templates code etc.

%
3

W

A

bJ % Universiteit Utrecht 34

I

Header files

* |ndirect inclusion issue (nested include)
#ifndef GAMECONST H GameConst.h #ifndef PLAYER H Player.h
#define GAMECONST H #define PLAYER H
#define GAMELEVELS 42 #include “GameConst.h”
/] ... /] ...
#fendif #fendif
#include “Player.h” Game. cpp
int main() {

for (int i = 0; 1 < GAMELEVELS; ++i)
Initializelevel (1) ;
/] ...
}

— If Player class does not need GameConst.h
anymore, compiler error in Game.cpp
 can be difficult to debug as unrelated files

’é

\

Wi,
b % Universiteit Utrecht
N

44

ﬁ

Header files

* Forward declaration: #include in body file

GameCamera.h

#include “GameEntity.h”
class GamePlayer; // forward declaration

class GameCamera : public GameEntity {

public:

GamePlayer* getPlayer();
private:

GamePlayer* player ;

¥

#include “GameCamera.h” GameCamera.cpp

#include “GamePlayer.h”

/]

— prevents to try to include GamePlayer (and each related
Includes) for each class that includes GameCamera

— solves the problem of dual inclusion

N

A
E—

TN

Universiteit Utrecht

@
. &

36

I
N

N
“

Precompiled header

Often, many classes need to include the
same files such as the standard libraries

#include “Player.h” Player.cpp

#include <vector>
#include <string>
#include <iostream>

/S

These APIs have large and complex header
They do not change during the development

One solution: the precompiled header
— not platform independent
— take advantage of it if possible

Universiteit Utrecht 37

Precompiled header

* A precompiled header will be loaded and
processed only once

* S0 we put only the headers that do not
change during the development process

 Visual Studio supports a precompiled
header (usually called stdafx.h)

“stdafx.h” // Precompiled header
“Warrior.h”

// other includes
“Player.h”
“Enemy.h”

/S

Wi
% b f‘-;; Universiteit Utrecht

NS

Precompiled header

* If we decide to compile with a precompiled
header, greatly decreased compile time

* But as number of included headers grows,
every file that uses the precompiled header
automatically knows about all the files that
are part of the precompiled header

The PIMPL pattern

The PIMPL (pointer to implementation)
pattern allows us to avoid including files
required only for private variables

Create a simple structure or class that
contains the private implementation

We create and destroy it along with the
object itself

The PIMPL pattern

Before

After

Warrior.h
“Player.h”
“Position.h”
<string>
Enemy;

Warrior Player {

Enemy * getEnemy () ;

Enemy * enemy ;
Position pos;
std::string name ;

// require the headers include

“Player.h”

Enemy;

Warrior Player {

Enemy * getEnemy () ;
PIMPL ;

PIMPL * pimpl ;

i

Warrior.h

RN

3= bl = Universiteit Utrecht

NS

The PIMPL pattern

“Warrior.h”
“Position.h”
“Enemy.h”
<string>

Warrior: :PIMPL {

Enemy * enemy ;
Position pos;
std::string name ;

i
Warrior: :Warrior () {

pimpl = PIMPL () ;

Warrior::~Warrior () {
pimpl ;

Enemy * Warrior::getEnemy () {
pimpl ->enemy ;

RN

3= bl = Universiteit Utrecht

NS

The PIMPL pattern

« Advantages

— We removed all includes related to private
Implementation

— Reduction in dependencies between headers

— We have also hidden all implementation details
to the user

 Limitations

— An added complexity to program the class
(access private members through PIMPL object)

— Minor performance cost for dynamic allocation
and redirection

M = Universiteit Utrecht 43

Dealing with bad data

Vector3D: :normalize () {
float flLength = sqgrt(x*x + y*y + z*z);
x /= flength;
y /= fLength;
z /= flength;
}

* In this function we might divide by 0!

* Tendency to propagate the NaN value to
calling functions while we would prefer to
deal with it here

RN

3= bl = Universiteit Utrecht

NS

\

ﬁ

Dealing with bad data

« Solution 1: use assert
— but Is removed In the released application

void Vector3D::normalize () {
float flLength = sqgrt(x*x + y*y + z*z);
assert (fLength !'= 0);
x /= fLength;
y /= flength;
z /= flength;

’é

Wi,
b % Universiteit Utrecht
YN

\

§

Dealing with bad data

« Solution 2: cope with it
— but adds extra logic (performance decreases)
— still produces ‘incorrect data’

vold Vector3D::normalize () {

float flength = sgrt(x*x + y*y + z*z);
1f (fLength !'= 0) {
x /= flength;
y /= fLength;
z /= flength;
}
else { // a unit vector
1.0£;
0.0f;
0.0f;

X
y
z

}

@

Wi,
bJ é Universiteit Utrecht

AN

« Solution 3: cope with it with error code or

Dealing with bad data

exception
— change the signature or need to be caught

bool Vector3D::normalize () {
float flLength = sqrt(x*x + y*y + z*z);
1t (fLength !'= 0) {
x /= flength;
y /= fLength;
z /= flength;
return true;
}
else { // a unit vector
1.0f;
0.0f;
0.0f;
return false;

X

y
yA

}

Universiteit Utrecht

47

Dealing with bad data

« Solution 4: a compromise
— potential performance hit from the conditions

vold Vector3D::normalize () {
float fLength = sqgrt(x*x + y*y + z*z);
#1fdef ASSERTBADDATA

assert (fLength != 0);
#endif
1f (fLength != 0) {

x /= flength;
y /= fLength;
z /= flength;

else {
= 1.0f;
y = 0.0f;
z = 0.0f;

}

A

% N ;-“"-E Universiteit Utrecht

NS

48

%
3

W
7N

A

Dealing with bad data

e Solution 5: add an “unsafe” function

— used only If already guaranteed that no zero-
length vector will be normalized

void Vector3D::normalizeUnsafe () {
float flength = sgrt(x*x + y*y + z*z);
x /= flength;
y /= fLength;
z /= flength;

}

Universiteit Utrecht

End of lecture #12

Next lecture
Game network programming

