
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #12

Game performance tuning

• Game performance is critical

– gameplay will decrease with lags, low resolution

rendering, memory overload etc.

– performance has to be monitored

• CPU charge, bus bandwidth use, memory footprint

• Essentially, timing and memory consumption

have to be measured

– to point out the most consuming sections

3

Introduction

• Each OS has an internal real-time clock system

• In Win32 programming environment

– number of milliseconds that have elapsed since the
system was started, up to 49.7 days

– number of clock ticks elapsed since the program
was launched

• CLOCKS_PER_SEC specifies the relation between a
clock tick and a second (clock ticks per second)

4

Timing

#include <windows.h>

DWORD WINAPI GetTickCount(void);

#include <time.h>

clock_t clock (void);

• To compute time elapsed in a function

5

Timing

unsigned long t1 = GetTickCount();

update_HID();

unsigned long t2 = GetTickCount();

update_PlayerState();

unsigned long t3 = GetTickCount();

run_AI();

unsigned long t4 = GetTickCount();

render();

unsigned long t5 = GetTickCount();

unsigned long timeHID = t2 - t1;

unsigned long timePlayer = t3 - t2;

unsigned long timeAI = t4 - t3;

unsigned long timeRender = t5 - t4;

• You can have a visual feedback of these

performance on screen

• Or show a percentage representation to see

how the functions hold together

• To detect what sections of the game are

slowing down the engine

• Optionally, switch in real-time with faster

versions of them if performance decreases

– lower level of detail in rendering or game logic,

less HID updates etc.

6

Timing

• Default resolution of GetTickCount is 10 to 16 ms

• Some routines may perform in less time

– 30 FPS = 33.3 ms for the whole game loop

• Multiple calls through iterations

– do not forget to remove them later on

– small over-estimation from the loop statement

– small under-estimation from compiler optimization of

loop statement

7

Timing

unsigned long time1 = GetTickCount();

for (int i = 0; i < iterations; i++) {

 // routine to estimate here

}

unsigned long time2 = GetTickCount();

double elapsed = (double)(time2-time1)/iterations;

• If you need higher resolution, and if a high-

resolution performance counter exists on the

hardware system

– processor dependent (nowadays ~10−7𝑠)

8

Timing

#include <windows.h>

BOOL WINAPI QueryPerformanceFrequency(

 __out LARGE_INTEGER *lpFrequency

);

// Retrieves the frequency of the high-resolution performance counter

BOOL WINAPI QueryPerformanceCounter(

 __out LARGE_INTEGER *lpPerformanceCount

);

// Retrieves the current value of the high-resolution performance counter

• To profile memory use

– to detect memory leaks

– to spot memory sensitive code

• By testing the total available memory before

and after the routine, and doing the

subtraction

9

Memory footprints

long m1 = available_memory();

// here goes the routine to test memory for

long m2 = available_memory();

long consumed_memory = m2 - m1;

• Implementation more complex than timing

• In multi-tasking, memory can be allocated from

other processes

– measuring total physical memory will also measure

allocations from these processes

• One solution is to write your own memory

manager

– by overwriting the new and delete operators

– and counting the memory allocation / de-allocation

– but not only for the user type, also for the primitive

types

10

Memory footprints

• operator new

11

Memory footprints

unsigned long usedMemory = 0; // memory allocated so far

unsigned long maxUsedMemory = 0; // max allocated memory so far

int numAllocations = 0; // number of active allocations

unsigned long maxAllocations = 0; // max active allocations so far

// User-defined operator new

void * operator new(size_t blocksize) {

 numAllocations++;

 usedMemory += blocksize;

 if (usedMemory > maxUsedMemory) maxUsedMemory = usedMemory;

 if (numAllocations > maxAllocations) maxAllocations = numAllocations;

 return malloc(blocksize); // perform the memory allocation

}

// ...

• operator delete

12

Memory footprints

// ...

unsigned long minUsedMemory = 0; // min allocated memory so far

// User-defined operator delete

void operator delete(void * pointer) {

 numAllocations--;

 usedMemory -= _msize(pointer); // allocated size of a pointer created

 // by a call to malloc

 if (usedMemory < minUsedMemory) minUsedMemory = usedMemory;

 free(pointer); // free the memory

}

• Then, regularly print usedMemory value (and
numAllocations)
– should be stable over a long period of time if each

new has its corresponding delete

– should go down to zero just before terminating the
application

• if not, most likely due to a memory leak

• You can also have a MemoryManager that
keeps track of a usedMemory value
– incremented after each new call

– decremented after each delete call

– stack variables can be ‘neglected’ as do not
produce memory leaks

13

Memory footprints

• One extra step is to optimize yourself the

memory according to its usage (access /

allocation / de-allocation) in your engine

– If access and creation patterns are known

– Large memory pool allocation at start time

– Implementation of homegrown new and delete

operators

– To reduce internal fragmentation that will slow

down the game

14

Memory footprints

• Tools are available to analyze your game at

run-time, called code profiler

• Programming environments such as Visual

Studio have built-in profiler functionalities to

display percentage of CPU time taken by

functions, to track memory leaks, etc.

15

Analysis tools

• Choose your enemy

– Focus on small portions of code that use many

resources

– Do not focus on linear sequential code

– Troubles are in iterations and recursions

– Make sure each loop takes as little time as

possible to execute

16

Optimization techniques

for (int i = 0; i < 10000; i++) {

 for (int j = 0; j < 10000; j++) {

 // this is usually here that you need to worry about resources

 // as you will execute this code 108 times

 }

}

• Precompute as much as possible

– Try to tabulate mathematical functions, random

numbering etc.

– To perform only an array access in the loop

– Example

• sinus call takes 5 times longer to be evaluated than

to access an array

17

Optimization techniques

float acc = 0;

for (int i = 0; i < 1000; i++)

 acc = acc + i * sin(x * i); // instead use: sinTable[x*i]

• Simplify your math

– Mathematical operators are not equally fast

– Complex function >> divide >> multiply >>

addition/subtraction

– Try to simplify equations (and/or tabulate them)

– Try to reduce type conversion

– Examples

18

Optimization techniques

double acc = 1000000;

for (int i = 0; i < 10000; i++) acc = acc / 2.0;

double acc = 1000000;

for (int i = 0; i < 10000; i++) acc = acc * 0.5;

//the second version takes 60% of the timing cost to execute

a*b + a*c = a*(b+c); // gets rid of one multiply

b/a + c/a = (1/a)*(b+c); // changes one division for one multiply

 = (b+c)/a; // gets rid of one division

• Store data efficiently

– chose the right data type with the right precision

– both code execution and memory footprint are

proportional to the number of bytes used

19

Optimization techniques

Type Size (B) Range

char 1 [-128 , 127]

unsigned char 1 [0 , 255]

int 4 [-2 147 483 648 , 2 147 483 647]

unsigned int 4 [0 , 4 294 967 295]

float 4 [-3.4*1038 , 3.4*1038] (7 decimal)

double 8 [-1.7*10308 , 1.7*10308] (15 decimal)

bool 1 true / false

• Minimize malloc (new) and free (delete) calls

– Try to avoid allocation and de-allocation in loops

– Place them outside the critical sections

– Example

20

Optimization techniques

for (long k=0; k<1000000; k++) {

 int i = 0;

}

// takes 3.53 ms to run (and 3.48 when i declared before for)

for (long k=0; k<1000000; k++) {

 int *i = new int;

 delete i;

}

// takes 5.58 s to run!! (and 5.56 when i declared before for)

• Use prefix increment/decrement operators

• Pseudo-code of prefix and suffix ++

21

Optimization techniques

vector<double> vec;

// add 1000000 elements in the vector

vector<double>::iterator ite;

for (ite = vec.begin(); ite != vec.end(); ite++) { } // takes 2.45 s

for (ite = vec.begin(); ite != vec.end(); ++ite) { } // takes 1.07 s

// prefix : ++variable

type & type::operator ++ () {

 // do the increment

 // e.g. _value += 1;

 return *this;

}

// suffix : variable++

type type::operator ++ (int) {

 type ans = *this;

 // do the increment

 // or call ++(*this);

 return ans;

}

• Be linear

– CPUs come with memory caches loaded when

accessing data

– Access continuous data in memory (e.g.

traversing an array from begin to end) produces

less cache misses

• so less loading time

22

Optimization techniques

• Watch out for pointers

– Traversing a sequence of pointers can take time

as the objects can be far away from each others

in memory

– Try to minimize the indirections

– Example

23

Optimization techniques

for (int i = 0; i < numPlayer; i++)

 Game::getInstance()->logic->world->team->players[i] = i * 2;

// can be rewritten more efficiently as

int * playersList = Game::getInstance()->logic->world->team->players;

for (int i = 0; i < numPlayer; i++)

 playersList[i] = i * 2;

• Size does matter

– To compile arrays of structures, the compiler

performs a multiplication by the size to create

the array indexing

• if the structure size is a power of 2, the multiplication

is replaced by a shift operation (much faster)

• you can round array sizes aligned to a power of 2

even if you do not use all of it

– Example

24

Optimization techniques

int arrayPlayersID [38];

int arrayPlayersID [64]; // faster allocation

• Breaking switches

– To reduce the number of comparisons in a

switch (or if-else-if statement), place all the less

frequent (error) cases at the end

25

Optimization techniques

switch (event.msg) {

 case FREQUENT_MSG1:

 handleFreqMsg1();

 break;

 // other frequent messages ...

 case INFREQUENT_MSG1:

 handleInFreqMsg1();

 break;

 // other infrequent messages ...

 default: //...

}

• Local variable in inner most scope

– Do not declare local variables directly after

function declaration

– Use them only when necessary

– Example

26

Optimization techniques

void function () {

 if (!error()) {

 // do something if no error

 }

 else {

 LargeMemoryObject o;

 // do something with o

 }

}

• Returning value

– Do not return a value if not used

– Returning a value has a cost (CPU and

memory)

– Example

27

Optimization techniques

bool calledFunction (float x) {

 // do something with x

 return true;

}

void function () {

 calledFunction(2.0); // is not using return value

}

• Prefer initialization over assignment

– Direct initialization saves a call to the default

constructor comparing to initialization followed

by instantiation

– Example

28

Optimization techniques

void function (Object value) {

 Object o; // default constructor

 o = value; // assignment operator

}

void function_optimized (Object value) {

 Object o = value; // copy constructor

}

• “Just in case” virtual functions

– Do not declare virtual functions just in case they

might be overridden one day

• look-up v-table cost (CPU to check it and memory to

store it)

– If the day comes, change them to virtual

– Example

29

Optimization techniques

class MyClass {

 // ...

 virtual void function (float);

}

// no subclasses of MyClass

// or subclasses that do not need to override function

• Keep the running fresh

– E.g. perform reset operations between levels

– Some consoles can even be completely

rebooted

– You can run manually some form of garbage

collector (and easier if you manage yourself the

memory allocation)

30

Optimization techniques

• A normal PC/console game deals with at

least 4000 files (more for MMOGs)

• A proper physical structure is crucial

• Structure is determined by which files need

other files in order to compile

• In C++ this ‘need’ translates into #include

directives

31

Physical structure

• In an ideal world, every file would compile by

itself

• Not possible as a program is made up of

interacting objects

• We can try to minimize the amount of

connections between files

• The level of connections between a file and

the rest of the code is called insulation

– fewer connections mean more insulated

32

Physical structure

• A class that hides well its implementation will

have better encapsulation

– Fewer classes depend on it

– Cleaner logical structure

– Easier debugging

– Simpler testing

• Whenever a file is modified, all files that

include that file need to be recompiled

– so the more insulated files you have, the faster

the code compiles

33

Physical structure

• Header files should contain the minimum
amount of code that still allows everything to
compile and run

• Move non-essential information out of the
header file into the implementation file

– Constants only used in the implementation,
local structure definitions, algorithms etc.

• However, C++ does not provide for a very
clear distinction

– We still need to define the non-public members
of a class in the header file, templates code etc.

34

Header files

• Indirect inclusion issue (nested include)

– if Player class does not need GameConst.h
anymore, compiler error in Game.cpp

• can be difficult to debug as unrelated files

35

Header files

#ifndef GAMECONST_H_ GameConst.h

#define GAMECONST_H_

#define GAMELEVELS 42

// ...

#endif

#ifndef PLAYER_H_ Player.h

#define PLAYER_H_

#include “GameConst.h”

// ...

#endif

#include “Player.h” Game.cpp

int main() {

 for (int i = 0; i < GAMELEVELS; ++i)

 InitializeLevel(i);

 // ...

}

• Forward declaration: #include in body file

– prevents to try to include GamePlayer (and each related

includes) for each class that includes GameCamera

– solves the problem of dual inclusion

36

Header files

#include “GameEntity.h” GameCamera.h

class GamePlayer; // forward declaration

class GameCamera : public GameEntity {

 public:

 GamePlayer* getPlayer();

 private:

 GamePlayer* player_;

};

#include “GameCamera.h” GameCamera.cpp

#include “GamePlayer.h”

// ...

• Often, many classes need to include the

same files such as the standard libraries

• These APIs have large and complex header

• They do not change during the development

• One solution: the precompiled header

– not platform independent

– take advantage of it if possible

37

Precompiled header

#include “Player.h” Player.cpp

#include <vector>

#include <string>

#include <iostream>

// ...

• A precompiled header will be loaded and

processed only once

• So we put only the headers that do not

change during the development process

• Visual Studio supports a precompiled

header (usually called stdafx.h)

38

Precompiled header

#include “stdafx.h” // Precompiled header Warrior.cpp

#include “Warrior.h”

// other includes

#include “Player.h”

#include “Enemy.h”

// ...

• If we decide to compile with a precompiled

header, greatly decreased compile time

• But as number of included headers grows,

every file that uses the precompiled header

automatically knows about all the files that

are part of the precompiled header

39

Precompiled header

• The PIMPL (pointer to implementation)

pattern allows us to avoid including files

required only for private variables

• Create a simple structure or class that

contains the private implementation

• We create and destroy it along with the

object itself

40

The PIMPL pattern

 Before After

41

The PIMPL pattern

 Warrior.h

#include “Player.h”

#include “Position.h”

#include <string>

class Enemy;

class Warrior : public Player {

 public :

 Enemy * getEnemy();

 private :

 Enemy * enemy_;

 Position pos;

 std::string name_;

 // require the headers include

};

 Warrior.h

#include “Player.h”

class Enemy;

class Warrior : public Player {

 public :

 Enemy * getEnemy();

 private :

 class PIMPL ;

 PIMPL * pimpl_;

};

42

The PIMPL pattern
#include “Warrior.h” Warrior.cpp

#include “Position.h”

#include “Enemy.h”

#include <string>

class Warrior::PIMPL {

 public:

 Enemy * enemy_;

 Position pos;

 std::string name_;

};

Warrior::Warrior() {

 pimpl_ = new PIMPL();

}

Warrior::~Warrior() {

 delete pimpl_;

}

Enemy * Warrior::getEnemy() {

 return pimpl_->enemy_;

}

• Advantages

– We removed all includes related to private
implementation

– Reduction in dependencies between headers

– We have also hidden all implementation details
to the user

• Limitations

– An added complexity to program the class
(access private members through PIMPL object)

– Minor performance cost for dynamic allocation
and redirection

43

The PIMPL pattern

• In this function we might divide by 0!

• Tendency to propagate the NaN value to

calling functions while we would prefer to

deal with it here

44

Dealing with bad data

void Vector3D::normalize() {

 float fLength = sqrt(x*x + y*y + z*z);

 x /= fLength;

 y /= fLength;

 z /= fLength;

}

• Solution 1: use assert

– but is removed in the released application

45

Dealing with bad data

void Vector3D::normalize() {

 float fLength = sqrt(x*x + y*y + z*z);

 assert(fLength != 0);

 x /= fLength;

 y /= fLength;

 z /= fLength;

}

• Solution 2: cope with it

– but adds extra logic (performance decreases)

– still produces ‘incorrect data’

46

Dealing with bad data

void Vector3D::normalize() {

 float fLength = sqrt(x*x + y*y + z*z);

 if (fLength != 0) {

 x /= fLength;

 y /= fLength;

 z /= fLength;

 }

 else { // a unit vector

 x = 1.0f;

 y = 0.0f;

 z = 0.0f;

 }

}

• Solution 3: cope with it with error code or

exception

– change the signature or need to be caught

47

Dealing with bad data

bool Vector3D::normalize() {

 float fLength = sqrt(x*x + y*y + z*z);

 if (fLength != 0) {

 x /= fLength;

 y /= fLength;

 z /= fLength;

 return true;

 }

 else { // a unit vector

 x = 1.0f;

 y = 0.0f;

 z = 0.0f;

 return false;

 }

}

• Solution 4: a compromise

– potential performance hit from the conditions

48

Dealing with bad data

void Vector3D::normalize() {

 float fLength = sqrt(x*x + y*y + z*z);

 #ifdef ASSERTBADDATA

 assert(fLength != 0);

 #endif

 if (fLength != 0) {

 x /= fLength;

 y /= fLength;

 z /= fLength;

 }

 else {

 x = 1.0f;

 y = 0.0f;

 z = 0.0f;

 }

}

• Solution 5: add an “unsafe” function

– used only if already guaranteed that no zero-

length vector will be normalized

49

Dealing with bad data

void Vector3D::normalizeUnsafe() {

 float fLength = sqrt(x*x + y*y + z*z);

 x /= fLength;

 y /= fLength;

 z /= fLength;

}

End of lecture #12

Next lecture

Game network programming

